The budding yeast Rad9 checkpoint complex: chaperone proteins are required for its function.
نویسندگان
چکیده
Rad9 functions in the DNA-damage checkpoint pathway of Saccharomyces cerevisiae. In whole-cell extracts, Rad9 is found in large, soluble complexes, which have functions in amplifying the checkpoint signal. The two main soluble forms of Rad9 complexes that are found in cells exposed to DNA-damaging treatments were purified to homogeneity. Both of these Rad9 complexes contain the Ssa1 and/or Ssa2 chaperone proteins, suggesting a function for these proteins in checkpoint regulation. Consistent with this possibility, genetic experiments indicate redundant functions for SSA1 and SSA2 in survival, G2/M-checkpoint regulation, and phosphorylation of both Rad9 and Rad53 after irradiation with ultraviolet light. Ssa1 and Ssa2 can now be considered as novel checkpoint proteins that are likely to be required for remodelling Rad9 complexes during checkpoint-pathway activation.
منابع مشابه
RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation.
In budding yeast, RAD9 and RAD24/RAD17/MEC3 are believed to function upstream of MEC1 and RAD53 in signalling the presence of DNA damage. Deletion of any one of these genes reduces the normal G1/S and G2/M checkpoint delays after UV irradiation, whereas in rad9Delta-rad24Delta cells the G1/S checkpoint is undetectable, although there is a residual G2/M checkpoint. We have shown previously that ...
متن کاملPhosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint.
Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents ...
متن کاملStructure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes
The repair of damaged DNA is coupled to the completion of DNA replication by several cell cycle checkpoint proteins, including, for example, in fission yeast Rad1(Sp), Hus1(Sp), Rad9(Sp) and Rad17(Sp). We have found that these four proteins are conserved with protein sequences throughout eukaryotic evolution. Using computational techniques, including fold recognition, comparative modeling and g...
متن کاملStructure-function analysis of fission yeast Hus1-Rad1-Rad9 checkpoint complex.
Hus1, Rad1, and Rad9 are three evolutionarily conserved proteins required for checkpoint control in fission yeast. These proteins are known to form a stable complex in vivo. Recently, computational studies have predicted structural similarity between the individual proteins of Hus1-Rad1-Rad9 complex and the replication processivity factor proliferating cell nuclear antigen (PCNA). This has led ...
متن کاملNuclear factories for signalling and repairing DNA double strand breaks in living fission yeast.
In mammalian and budding yeast cells treated with genotoxic agents, different proteins implicated in detecting, signalling or repairing DNA lesions form nuclear foci. We studied foci formed by proteins involved in these processes in living fission yeast cells, which is amenable to genetic and molecular analysis. Using fluorescent tags, we analysed subnuclear localisations of the DNA damage chec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 4 10 شماره
صفحات -
تاریخ انتشار 2003